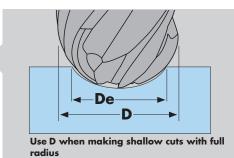
Technical Resources

ADJUSTMENTS FOR BALL NOSE END MILLS

The speeds and feeds of ball nose end mills must be adjusted to ensure proper tool life. Adjustments are based on the amount of tool engagement.

If the depth of cut (ADOC) is <50% of the tool diameter:


Adjustments must be made to determine the effective cutting diameter and to adjust for axial chip thinning. Follow these steps:

STEP 1: Use speed and feed values for slot cuts from the speed and feed charts for the appropriate material and tool diameter.

Note: Make an additional adjustment using the chart to the right if the tool projection exceeds 2.5 x the tool diameter.

STEP 2: Determine the effective cutting diameter (De) of the end mill based on the axial depth of cut. The effective cutting diameter will be used to make both speed and feed adjustments.

	Projection	Speed Adj	Feed Adj
1	> 2.5 to 3 x D	SFM or MMPM x .95	IPT or MMPT x .95
	> 3 to 4 x D	SFM or MMPM x .90	IPT or MMPT x .90
	>4 to 5 x D	SFM or MMPM x .80	IPT or MMPT x .80
	> 5 to 6 x D	SFM or MMPM x .70	IPT or MMPT x .70

Ball Nose "Effective Diameter" D = 2x $\sqrt{R^2 - (R - ADOC)^2}$

For easy reference, use the charts below.

	Depth of Cut (ADOC)	1/8		1/4		3/8		1/2		3/4		1	
		Depth	De	Depth	De								
	10% of tool diameter	.013	.075	.025	.150	.038	.225	.050	.300	.075	.450	.100	.600
Fractional:	20% of tool diameter	.025	.100	.050	.200	.075	.300	.100	.400	.150	.600	.200	.800
	30% of tool diameter	.038	.115	.075	.229	.113	.344	.150	.458	.225	.687	.300	.917
	40% of tool diameter	.050	.123	.100	.245	.150	.367	.200	.490	.300	.73	.400	.980
	50% of tool diameter	.063	.125	.125	.250	.186	.375	.250	.500	.375	.7500	.500	1.000

Metric:	
/verre:	

	Depth of Cut (ADOC)		.0	6.	.0	10	.0	12	2.0	20	0.0	25	5.0
		Depth	De	Depth	De	Depth	De	Depth	De	Depth	De	Depth	De
	10% of tool diameter	.300	1.800	.600	3.600	1.000	6.000	1.200	7.200	2.000	12.000	2.500	15.000
•	20% of tool diameter	.600	2.400	1.200	4.800	2.000	8.000	2.400	9.600	4.000	16.000	5.00	20.000
	30% of tool diameter	.900	2.750	1.800	5.500	3.000	9.165	3.600	10.998	6.000	18.330	7.500	22.913
	40% of tool diameter	1.200	2.940	2.400	5.880	4.000	9.800	4.800	11.760	8.000	19.600	10.000	24.500
	50% of tool diameter	1.500	3.000	3.000	6.000	5.000	10.000	6.000	12.000	10.000	20.000	12.500	25.000

STEP 3: Calculate speed based on using the effective cutting diameter. Use the standard SFM or M/min to RPM conversion formula. Substitute the effective cutting diameter (De) for the actual tool diameter (D).

STEP 4: Calculate the adjusted feed rate based on the effective cutting diameter and the axial chip thinning formula.

The new feed rate is calculated:

Fractional:	IPM = RPM x (Z x IPT adj)
Metric:	MMPM = RPM x (Z x MMPTadj)

 Fractional:
 RPM = (SFM x 3.82) / De

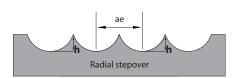
 Metric:
 RPM = (M/min x 318.3) / De

D = Actual tool diameter
 IPT = Feed rate from chart for slot milling
 De = Effective cutting diameter
 MMPT = Feed rate from chart for slot milling

Fractional:	IPTadj = (D x IPT) / De
Metric:	MMPTadj = (D x MMPT) / De

IPM = Inches per minute Z = # of flutes IPT adj = Adjusted chip load per tooth fractional MMPT adj = Adjusted chip load per tooth metric MMPM = Millimeters per minute

If the axial depth of cut (ADOC) is \geq 50% of the tool diameter:


- Use the speed and feed values shown for the slotting operation in the speed and feed charts for the series of end mill being used.
- If the tool projection exceeds 2.5 x the tool diameter, adjust the slotting speeds and feeds by the chart for long reach tool adjustments. This can be found on page 133.

SURFACE FINISH

Radial depth of cut (RDOC), or stepover, is based on the desired finish. The lighter the step-over, the lower the scallop height (material left uncut by the radius of the tool), and the better the finish. These charts calculate approximate scallop height using the following formula:

h ~ (ae²) / (8R)

- h = Scallop height
- ae = Radial step-over
- R = Radius of end mill (tool diameter x .5)

	Fra	ctional			Metric					
Tool Diameter	Step-over % of OD	Step-over Actual	Approx Scallop Height	Tool Diameter	Step-over % of OD	Step-over Actual	Approx Scallop Height			
	10%	.013	.0003	3.0 mm	10%	.300	.0075			
1/8	20%	.025	.0013		20%	.600	.0300			
	30%	.038	.0028		30%	.900	.0675			
	10%	.025	.0006		10%	.600	.0150			
1/4	20%	.050	.0025	6.0 mm	20%	1.200	.0600			
	30%	.075	.0056		30%	1.800	.1350			
	10%	.038	.0009	10.0 mm	10%	1.000	.0250			
3/8	20%	.075	.0038		20%	2.000	.1000			
	.30%	.113	.0084		.30%	3.000	.2250			
	10%	.050	.0013	12.0 mm	10%	1.200	.0300			
1/2	20%	.100	.0050		20%	2.400	.1200			
	30%	.150	.0113		30%	3.600	.2700			
	10%	.075	.0019		10%	2.000	.0500			
3/4	20%	.150	.0075	20.0 mm	20%	4.000	.2000			
	30%	.225	.0169		30%	6.000	.4500			
	10%	.100	.0025		10%	2.500	.0625			
1	20%	.200	.0100	25.0 mm	20%	5.000	.2500			
	30% .300		.0225		30%	7.500	.5625			